Roles of Escherichia coli ZinT in cobalt, mercury and cadmium resistance and structural insights into the metal binding mechanism.
نویسندگان
چکیده
Escherichia coli ZinT is a metal binding protein involved in zinc homeostasis, with additional putative functions in the resistance against other metals. Herein, a method was designed and implemented to evaluate from a structural and functional viewpoint metal binding to E. coli ZinT in 96-well microtiter plates. The isolated ZinT was mixed with several metal ions and their binding ability was determined by differential scanning fluorimetry. From the positive hits, six metal ions were evaluated in terms of their toxicity towards an E. coli strain depleted of ZinT (ΔzinT) using as control a strain deleted in the galT gene (ΔgalT). The different sensitivities of each strain to the tested metals revealed novel roles of ZinT in the resistance to cobalt, cadmium and mercury. This approach provides a valuable and reliable platform for the analysis of metal binding and its functional implications, extendable to other metal binding proteins. In combination with the developed platform, structural studies were performed with ZinT, with the zinc-loaded crystallographic structure being obtained at 1.79 Å resolution. Besides the canonical zinc-binding site located near the N-terminus, the herein reported dimeric ZinT structure unravelled extra zinc binding sites that support its role in metal loading and/or transport. Altogether, the designed experimental platform allowed revealing new roles for the ZinT protein in microbial resistance to heavy metal toxicity, as well as structural insights into the ZinT metal binding mechanism.
منابع مشابه
Enhanced Bioadsorption of Cadmium and Nickel by E. coli Displaying A Metal Binding Motif Using CS3 Fimbriae
Display of peptides on the surface of bacteria offers many new and exciting applications in biotechnology. Fimbriae is a good candidate for epitope display on the surface of bacteria. The potential of CS3 fimbriae of enterotoxigenic E. coli as a display system has been investigated. A novel cell surface display system with metal binding property was developed by using CS3 fimbriae. Short metal ...
متن کاملEFFECTS OF SOME NOVEL ASCORBIC ACID-METAL COMPLEXES ON SELECTED BACTERIAL AND FUNGAL SPECIES
The antimicrobial activity of some novel ascorbic acid-metal complexes [bisascorbate complexes of copper (II), zinc(II), manganese (11), iron (111), cobalt(II), lead(II) and cadmium(II)] was investigated. Four standard strains of bacterial species - Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Klebsiella pneumonia and four fungal species - Trichophyton sp. Penicillium sp....
متن کاملSilver Resistance In Acinetobacter baumannii BL54 Occurs Through Binding to a Ag-Binding Protein
The mechanism of plasmid mediated silver (Ag) resistance was investigated in Acinetobacter baumanniiBL54. The intracellular accumulation of Ag in both original strain BL54 and Escherichia coli K12transconjugant containing plasmid pUPI276 began immediately and reached a maximum within 60 minutes.This initial accumulation was followed by net loss of Ag which reached a maximum wi...
متن کاملDevelopment of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif.
A gene coding for a de novo peptide sequence containing a metal binding motif was chemically synthesized and expressed in Escherichia coli as a fusion with the maltose binding protein. Bacterial cells expressing the metal binding peptide fusion demonstrated enhanced binding of Cd2+ and Hg2+ compared to bacterial cells lacking the metal binding peptide. The potential use of genetically engineere...
متن کاملComputational insights into fluconazole resistance by the suspected mutations in lanosterol 14α-demethylase (Erg11p) of Candida albicans
Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their effect could provide new insights into the underlying mechanism of fluconazole resistance. Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine (Erg11p_LEU321PHE) and Erg11p_Serine457Pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metallomics : integrated biometal science
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2016